MAX materials and MXene materials are new two-dimensional materials who have attracted much attention lately, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in lots of fields. This is a detailed introduction to the properties, applications, and development trends of MAX and MXene materials.
What exactly is MAX material?
MAX phase material is a layered carbon nitride inorganic non-metallic material composed of M, A, X elements on the periodic table, collectively known as “MAX phase”. M represents transition metal elements, such as titanium, zirconium, hafnium, etc., A represents the key group elements, such as aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, the 3 elements of the alternating composition arrangement, with hexagonal lattice structure. Due to their electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, these are widely used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding as well as other fields.
Properties of MAX material
MAX material is really a new type of layered carbon nitride inorganic non-metallic material with the conductive and thermal conductive qualities of metal, comprising three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers to the transition metal, A means the main-group elements, and X refers to the aspects of C and N. The MXene material is really a graphene-like structure obtained from the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX phases are novel two-dimensional nanomaterials made from carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the wonderful physical properties of MAX materials get them to have a variety of applications in structural materials. For example, Ti3SiC2 is a common MAX material with good high-temperature performance and oxidation resistance, which could be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials are also found in functional materials. For example, some MAX materials have good electromagnetic shielding properties and conductivity and can be used to manufacture electromagnetic shielding covers, coatings, etc. Additionally, some MAX materials also provide better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be found in energy materials. For example, K4(MP4)(P4) is one of the MAX materials rich in ionic conductivity and electrochemical activity, which bring a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
What Exactly are MXene materials?
MXene materials really are a new form of two-dimensional nanomaterials obtained by MAX phase treatment, like the structure of graphene. The top of MXene materials can interact with more functional atoms and molecules, and a high specific surface, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation strategies for MXene materials usually range from the etching treatment of the MAX phase as well as the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties such as electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials certainly are a new form of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, including high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., as well as good chemical stability and the ability to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are popular in energy storage and conversion. For example, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials could also be used as catalysts in fuel cells to enhance the activity and stability of the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. As an example, MXene materials can be used as electromagnetic shielding coatings, electromagnetic shielding cloth, and other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. For example, MXene materials can be used as gas sensors in environmental monitoring, which may realize high sensitivity and selectivity detection of gases. Additionally, MXene materials can also be used as biosensors in medical diagnostics along with other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. In the future, with all the continuous progress of technology and science and also the improving demand for services for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials will likely be further expanded and improved. The following aspects could become the main objective of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. In the future, new preparation technologies and techniques could be further explored to realize a more efficient, energy-saving and eco-friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, but there is still room for additional optimization. In the future, the composition, structure, surface treatment and other elements of the content can be studied and improved thorough to improve the material’s performance and stability.
Application areas: MAX materials and MXene materials have been widely used in many fields, but you can still find many potential application areas to get explored. In the future, they can be further expanded, including in artificial intelligence, biomedicine, environmental protection along with other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show an extensive application prospect in many fields. With all the continuous progress of science and technology and also the continuous improvement of application demand, the preparation technology, performance optimization and application areas of MAX and MXene materials will be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.